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Abstract

In this paper, a generic method is described to allow the adaptation of different multimedia resources by a single,
media resource-agnostic processor. This method is based on an XML description of the media resource’s bitstream
syntax, which can be transformed to reflect the desired adaptation and then be used to generate an adapted version of
the bitstream. Based on this concept, two complementary technologies, BSDL? and gBS Schema, are presented. The
two technologies provide solutions for parsing a bitstream to generate its XML description, for the generic structuring
and marking of this description, and the generation of an adapted bitstream using its transformed description. The two
technologies can be used as stand-alone tools; however, a joint approach has been developed in order to harmonise the
two solutions and exploit their strengths. This paper is focusing on the gBS Schema and the joint BSDL/gBS Schema
harmonised approach.
© 2003 Elsevier B.V. All rights reserved.

1. Introduction

The information revolution of the last decade has resulted in a phenomenal increase in the quantity of
content (including multimedia content) available to an increasing number of users who access it through a
plethora of devices and networks. Devices range from mobile phones to high definition TVs and access
networks can be as diverse as GSM and broadband cable networks. In order to enhance the user’s
experience, the delivered content® must be tailored (adapted) to the specific device and network capabilities,
as well as to the natural environment and user characteristics and preferences.
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The need to standardise a framework that facilitates the control of adaptations has been recognised by
several standardisation bodies (W3C, WAP, and MPEG). Standards have already been established or are
currently under development that provide tools for content description (MPEG-7 [11]) and capability
description and negotiation (CC/PP [21], UAProf [23], and MPEG-21 DIA [16]).

But still a major obstacle to apply these frameworks in adaptive multimedia systems is the adaptation of
the encoded multimedia resource itself. The adaptation of encoded media bitstreams is, in general, coding
format-specific. Given the variety of coding formats available, the implementation of an adaptation
processor covering a high percentage thereof is expensive and difficult to maintain with respect to new
codecs.

In this paper, we describe an approach that overcomes this obstacle and facilitates the adaptation of
encoded multimedia bitstreams in a generic way, by describing the high-level structure of the bitstream with
an XML document called Bitstream Syntax Description (BSD). This description allows a device, even if it is
agnostic of the specific coding format of a binary media resource, to adapt such a media resource.

This novel approach is currently under consideration for Part 7 of the MPEG-21 standard (Digital Item
Adaptation) [16]. In this paper, besides the illustration of the BSD, the overall adaptation architecture is
described, examples are given, and experimental performance measurements, in terms of file sizes and
computational times, are discussed.

The remainder of the paper is organised as follows. In Section 2, the general adaptation approach and
possible applications are described; brief background information on content adaptation, XML, and media
scalability is also provided. In Section 3, the adaptation process using BSD is explained in detail; a special,
but anticipated use case of multi-step adaptation is also analysed in Section 3. The application of the
proposed BSD-based adaptation methods on MPEG-4 Visual Elementary Streams and JPEG2000 images
is demonstrated in Section 4; performance results are presented as well. Finally, conclusions are given in
Section 5.

2. Media resource adaptation framework
2.1. Application scenarios

The overall approach to multimedia resource adaptation as outlined above delineates the capabilities and
application areas of the proposed techniques.

The application scenarios are in general limited by the capabilities of the engaged technologies. For the
approach described in this paper, on the one hand, versatile and powerful adaptation tools are facilitated
even on devices with limited computational and storage capabilities, since the high-level, XML-based
Bitstream Syntax Descriptions abstract from the “bits and pieces” of the binary media resources. In
addition, since the adaptation processes become independent from the specific coding formats of the media
resources, adaptation engines can be located anywhere in a distributed multimedia system: on a server, a
client, and conceptually even on network nodes like proxies, gateways, or routers.

On the other hand, producing an adapted version of a media bitstream requires XML and XSLT
processing, as described in the remainder of the paper. Also, adaptation according to a given set of
constraints involves a well-informed and potentially non-trivial decision process, taking as input capability,
preference, and constraint descriptions. These factors rule out low-end devices, due to insufficient
computational resources, and make the approach ill-suited for hard real-time adaptation applications, such
as on-the-fly manipulation of media bitstreams in an intermediate network device that is, e.g., forced to
drop packets from the bitstream due to temporary congestion. Further constraints are represented by the
pre-requisite of suitable scalable media resource coding and by the restrictions to editing-style adaptation
operations on bitstreams.
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Thus, adaptations as considered here, based on bitstream syntax descriptions, are best performed on
devices with reasonable computational power and storage capacity, capable of XML and XSLT processing,
and applications tolerant to small delays. Two examples are given below; other application scenarios in the
same spirit are easily derived.

The evolving MPEG-21 standard aims to provide a multimedia framework that will “enable transparent
and augmented use of multimedia resources across a wide range of networks and devices” [12]. The MPEG-21
defined use cases [15] span already a wide range of envisaged applications of the approach described in this
paper. An obvious application area is the delivery of digital resources in a heterogeneous environment, most
often referred to as Universal Multimedia Access (UMA). Simple transformations can be performed to
adapt the resources to e.g.:

® client devices with different audio—visual (e.g., display size), user interaction, communication,
computational and storage capabilities;

® user preferences, constraints, and behaviour (e.g., movement, speed); and

® (static) network characteristics and QoS (e.g., bandwidth, delay, jitter, error rate).

These adaptations can be performed on servers, proxy servers, dedicated media gateways, or on
reasonably powerful client devices. It is likely that highly dynamic QoS fluctuations, e.g. network
contention, need other adaptation mechanisms which can be conducted with low delays on a router. Such
cases are not considered here.

Another promising application is quality-aware multimedia caching as discussed in [3]. In the scenario
reported there the video cache stores videos in several quality layers. If the cache is about to run out of
storage, it degrades the quality and thus decreases the size of unpopular videos rather than completely
discarding them from the store, according to different strategies. Since this type of quality reduction is a
background (i.e., non-real-time) process and the video cache is assumed to be in a computationally
powerful machine, the adaptation can be performed using the proposed bitstream syntax description and
transformation techniques.

It must be noted that one of the techniques (gBS Schema; cf. Section 3.4) goes beyond pure syntactical
modifications of the media resource bitstreams. It introduces a mechanism (a handle called “marker’”) that
allows semantic-driven adaptations to be performed by resource adaptation engines that are agnostic to the
resource’s coding format and semantics, based on the very same process as used in other bitstream
manipulations. The semantic information, expressed using metadata schemes like MPEG-7, can be linked
to the corresponding bitstream segments through the use of the marker. The marker concept is described in
more detail in Section 3.4.1. Examples of this type of semantic-related adaptations are the removal of
violent scenes from a video (cf. Section 4) and the display of specific regions of interest from JPEG2000
images. Applications of this technique are manifold.

2.2. Qverall approach

As pointed out in the previous section, the motivation for multimedia resource adaptation is to deliver
the best possible content (in terms of information and perceived quality) to the end user given the current
set of constraints, e.g. device characteristics and user preferences. The high-level adaptation architecture is
depicted in Fig. 1.

Even though this architecture is applicable to the adaptation of any type of content, the focus of this
work is on binary multimedia resources. Hence, any reference to “‘resource’ will imply a binary multimedia
resource.

The Adaptation Engine is a logical unit that can be located on the originating server, an intermediate
network device (gateway, router, proxy) or even on the client. This engine comprises two logical modules,
the Adaptation Decision Engine and the Resource Adaptation Engine.
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Fig. 1. High-level adaptation architecture.

The Adaptation Decision Engine receives the metadata information about the available content
(semantics, format, and adaptation options) from the Resource Repository and the constraints (terminal
and network capabilities, user characteristics and preferences, and natural environment characteristics)
from the receiving side. If there are multiple versions of the content pre-stored in the repository and
one of these versions matches the constraints, then this version is selected, retrieved, and sent to the
end user. However, if the available resource does not match the constraints, but can be adapted,
then the Adaptation Decision Engine determines the optimal adaptation for the given constraints and
passes this decision to the Resource Adaptation Engine. Then the Resource Adaptation Engine retrieves
the resource from the repository, applies the selected adaptation and sends the adapted resource to the
end user.

The described architecture exhibits the following essential elements of multimedia resource
adaptation:

1. Resource Description: The Resource Description contains all metadata that are related to the adaptation
process. This includes metadata that provide information assisting the adaptation decision making
and metadata that are used for the resource adaptation. The description should therefore
include information on the resource type and semantics (e.g. MPEG-7 descriptors [11]), the available
adaptation options and characteristics of the adapted versions of the resource and the bitstream syntax
(e.g. MPEG-21 DIA descriptors [16]).

2. Constraints Description: The constraints can be grouped into four broad categories: user and natural
environment characteristics, terminal capabilities, and network characteristics. The terminal and
network constraints will set an upper bound on the resources that can be transmitted over the network
and rendered by the terminal. Information like the network’s maximum bandwidth, delay and jitter, or
the terminal’s resolution, buffer size, and processing power, will help the Adaptation Engine determine
the optimal version of the resource for the given network and terminal device. As the user is the actual
consumer (and judge) of the resource, user related information, including user preferences, user
demographics, usage history and natural environment, is equally important in deciding which resource
should be delivered to the terminal.

3. Resource Scalability: A multimedia resource is defined to be scalable if the data is organised in such a
way that, by retrieving parts of the data, an adapted version of the original content can be rendered.
Scalability, therefore, can be available in one of the following forms:

e an individual resource that is encoded with increasing SNR quality, spatial, or temporal resolution;

e an individual resource, parts of which can be removed (e.g., a scene from a video sequence);

e a multimedia presentation where one or more individual resources may be removed (e.g., video is
removed, only audio is kept from a news broadcast).
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4. Adaptation Decision Engine: This algorithm takes as input the resource and constraints description and
outputs the adaptation that needs to be applied to the resource. The adapted resource should be of
optimal quality under the given constraints.

5. Resource Adaptation Engine: This module performs the selected adaptation of the resource. It can
include various sub-modules, ranging from a simple bitstream parser to a sophisticated transcoder.

2.3. Resource descriptions and adaptations considered

The work described in this paper is within the scope of Resource Adaptation Engine as shown in Fig. 1.
Specifically, the proposed solution applies mainly to adaptations which involve editing a binary media
resource. This editing includes removing bitstream blocks and modifying the values of syntactical elements
of the bitstream. “Transmoding” of multimedia resources, i.e. adaptations from one media type to another
(e.g., text to speech), and transcoding, i.e. adaptations that require the partial or full decoding of a resource
(e.g., MPEG-2 to MPEG-4), require detailed knowledge of the specific coding formats involved and are
therefore out of the scope of this work.

Given the variety of available multimedia coding formats and adaptation options, an adaptation engine
would be expected to incorporate several codec-specific modules for performing even simple adaptations
involving removal or modification of syntactical elements of the bitstream. This approach would yield
expensive and difficult to maintain adaptation engines, in particular with respect to upcoming coding
formats and multimedia types. As an alternative, we propose a generic tool that allows an adaptation
engine to transform a multimedia resource without any prior knowledge of the resource’s coding format
and therefore without the need to maintain codec-specific modules. With the proposed solution, the
resource adaptation engine requires a single processor that uses the XML description of the bitstream
syntax to produce an adapted version of the bitstream.

The algorithm behind the adaptation decision engine is an interesting subject of research in itself.
MPEG-21 has specified descriptors to assist the decision process (e.g. Choice/Selection in the Digital Item
Declaration [13] and AdaptationQoS in DIA [16]), however, the decision-making algorithm itself is
implementation specific. It is considered to be beyond the scope of this paper.

2.4. Related work

In the sequel, we give a brief overview of related technologies and standards. On the one hand, several
standardisation groups have investigated and standardised capability description schemes which can be
used to control bitstream adaptations. IETF has created the Content Negotiation Protocol (CONNEG) [7]
that enables protocol-independent negotiation covering both the content and the user. The W3C has built
the RDF-based (which can be XML serialised) Composite Capability/Preference Profiles (CC/PP) [21]
protocol. The WAP Forum has used the CC/PP to define the User Agent Profile (UAProf) [23] which
provides a CC/PP vocabulary describing the characteristics of WAP-enabled devices. MPEG has created
the MPEG-7 standard, which specifies an extensive metadata scheme for the description of multimedia
resources and user characteristics [11]. Finally, MPEG is currently defining descriptors of user, natural
environment, terminal and network characteristics and other resource and adaptation related tools within
the MPEG-21 Digital Item Adaptation (DIA) framework [16]. Most of the metadata schemes mentioned
above are defined using the World Wide Web Consortium’s (W3C) XML Schema Language [22] and
expressed using the W3C’s Extensible Markup Language (XML) [20].

On the other hand, scalable coding formats supporting bitstream adaptations have been the subject of
research for many years. The most widely used type of video scalability is temporal, where predicted frames
(B- and P-type) may be dropped to reduce the frame rate and consequently the video’s bitrate. For SNR
and spatial scalability, a layered approach has been adopted in standardised codecs (MPEG-2, MPEG-4,
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H.263), where, on top of a base layer, several enhancement layers may be added to provide an improvement
in SNR quality or spatial resolution. A fine granular approach (Fine Granular Scalability, FGS) has been
proposed and amended to the MPEG-4 Visual standard [18]. For image compression, the JPEG2000
standard uses wavelet transformation, which provides layered SNR, spatial, and colour scalability [9].

The BSDL approach was originally inspired by XML publishing frameworks such as Cocoon [4]
developed by the Apache Software Foundation to publish XML content adapted to the requesting client in
a Web context. However, to the best of our knowledge, no work had been done yet to extend these
principles to binary multimedia data and to other non-Web-based applications.

Flavor, a language for media representation [5,6], is a technology which has similarities, in some aspects,
with the BSDL/gBS Schema approach. Flavor, which stands for Formal Language for 4udio—Visual Object
Representation, was initially designed as a declarative language with a C+ +-like syntax to describe the
bitstream syntax on a bit-per-bit basis. Its aim is to simplify and speed up the development of software that
processes audio—visual bitstreams by automatically generating the required C+ + and Java code to parse
the data, hence allowing the developer to concentrate on the processing part of the software. Unlike the
BSD approach, it does not generate a permanent description of the parsed data, but only an internal
memory representation in the form of a collection of C+ + or Java objects.

Recently, Flavor was enhanced to support XML features (XFlavor) and tools for generating an XML
description of the bitstream syntax, transforming the XML description and regenerating the adapted
bitstream [6]. There are, however, some fundamental differences to BSDL/gBS Schema, stemming mainly
from the original focus of the two technologies. In XFlavor, the schema does not play part in the bitstream
parsing and description generation process, which is done by the ad-hoc C+ + or Java code generated
from the Flavor description. For the bitstream generation, unlike BSDL/gBS Schema which relies on the
XML Schema datatype definition, XFlavor uses proprietary attributes declared in the schema and
indicating the binary encoding of the element content. A major drawback of this design is that two elements
with the same type (e.g. encoded on two bits) will require the same verbose declaration in the schema, while
BSDL/gBS Schema will define the corresponding type once, and use it for all elements. Furthermore, using
XML Schema native mechanisms for datatype definition and derivation allows validating the value and
optimally binarising it with tools such as MPEG-7 BiM [10]. Lastly, in XFlavor, the complete bitstream
data are actually embedded in the XML document, resulting in potentially huge descriptions, while BSDL/
¢BS Schema uses a specific datatype to point to a data range in the original bitstream when it is too verbose
to be included in the description. This is why, unlike Flavor/XFlavor, BSDL is rather a description rather
than a representation language, and can describe the bitstream at a high syntactical level instead of a low-
level, bit-per-bit basis.

With respect to the gBS Schema approach in particular, the main differences lie in the generic, universal
and codec independent format of the corresponding generic Bitstream Syntax Descriptions (gBSDs), and in
the introduction of means to mark individual elements in the gBSD in order to enable and simplify complex
and semantic-based adaptations. Such marking is not possible with XFlavor.

The principles of BSDL have been described in [1] and an example application of BSDL for MPEG-4
Visual Texture Coding was introduced in [17]. This paper focuses on the generic Bitstream Syntax Schema
(gBS Schema) and the harmonised BSDL/gBS Schema approach, which have not yet been presented in the
scientific literature.

3. Media resource adaptation using bitstream syntax descriptions
For most binary media resources, a variety of adapted versions can be retrieved from a single bitstream

by performing simple operations such as the removal of data blocks. In order to provide interoperability
and to avoid the need for multiple codec-specific adaptation modules, it is desirable that a processor that is
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unaware of the specific coding format can be used for this task. For this, a generic approach is taken by
providing a method based on XML for describing and manipulating bitstreams.

A binary media resource consists of a structured sequence of binary symbols, this structure being specific
to the coding format. A bitstream is defined as the sequence of binary symbols representing this resource.
XML is used to describe the high-level structure of a bitstream; the resulting XML document is called a
Bitstream Syntax Description (BSD ). This description is not meant to replace the original binary data, but
acts as an additional layer, similar to metadata. In most cases, it will not describe the bitstream on a bit-per-
bit basis, but rather address its high-level structure, e.g. how the bitstream is organised in layers or packets
of data. For this, a specific mechanism is provided to indicate a segment of data in the original bitstream
instead of actually including the data since this would make the description too verbose. Furthermore, the
bitstream description is itself scalable, which means it may describe the bitstream at different syntactic
layers, e.g. finer or coarser levels of detail, depending on the application. The bitstream description itself
must also be adaptable in order to properly reflect bitstream adaptations. Lastly, unlike many metadata
schemes such as MPEG-7, it initially does not deal with the semantics of the bitstream, i.e. does not provide
metadata information regarding the original object, image, audio or video it represents, but only considers
it as a sequence of binary symbols.

With such a description, it is then possible for a resource adaptation engine to transform the XML
document and then generate back an adapted bitstream. XSLT (Extensible Stylesheet Language for
Transformations) [19], which provides a standardised method for transforming XML documents, can be
advantageously used for this purpose. In order to provide full interoperability, it is then necessary that a
processor that is not aware of the specific coding format can nevertheless be used to produce a BSD, and/or
generate a bitstream from its BSD. For this, it will rely on the information on the specific coding format
provided by a schema. In this way, communicating devices (e.g., Resource Repository and Adaptation
Engine of Fig. 1) will be able to exchange BSDs and transformation descriptions, for example in the form of
XSLT style sheets. Based on the concept described above, two complementary technologies have been
developed.

® BSDL: A new language based on XML Schema, called Bitstream Syntax Description Language (BSDL),
was created by Philips Research, France [1,2]. With this language, it is possible to design specific
Bitstream Syntax Schemas (BS Schemas) describing the syntax of a particular coding format. These
schemas can then be used by a generic processor to automatically parse a bitstream and generate its
description, and vice versa.

® ¢BS Schema: BSDL provides means for describing a bitstream syntax which relies on a codec-specific BS
Schema. This requires a resource adaptation engine to know the specific schema in order to parse the
BSD to generate the corresponding bitstream. In some use cases this is not desired, for instance if the
adaptation takes place on remote devices with constrained resources, e.g., in proxies. In these cases,
a codec-independent schema is more appropriate. Therefore, a generic Bitstream Syntax Schema
(gBS Schema) was created by the collaborative parties at the University Klagenfurt, Austria, and
Siemens AG, Munich, Germany. The gBS Schema enables the codec-agnostic description of the
bitstream and introduces means for describing syntactical bitstream units in a hierarchical fashion and
addressing means for efficient bitstream access. Additionally, it provides semantic handles to sections of
the bitstream (the so-called “markers”) that facilitate semantic-based manipulation or removal of
bitstream portions.

The two technologies described in this paper can be applied independently. Each approach carries its
own merits and advantages which make it the preferred choice for specific applications. Since their common
added value is to be applicable to any multimedia coding format, it is vital to be able to produce such
descriptions without having to modify the encoders for each targeted format. BSDL solves this issue by
providing a generic way to generate a BSD from a bitstream. For this, a single generic software is required,
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exploiting the coding format-specific information provided by the BS Schema. Symmetrically, the same
schema is used for producing the adapted bitstream from the transformed description. In the cases where
the availability of the specific BS Schema may become an issue, for example on constrained devices, the gBS
Schema approach provides a further abstraction level with codec-independent BSDs which are named
generic BSDs (gBSD). In this case, the use of a generic, normalised schema along with semantic handles in
the gBSDs enables more efficient implementations for both description transformation and bitstream
generation processes. Furthermore, the semantic handles provided by the gBS Schema enable semantic and
complex adaptations which would otherwise require the use of algorithms that have extensive knowledge of
the coding format specifics. The flexibility provided by BSDL (in providing a generic way to generate BSDs
from bitstreams) and the processing efficiency provided by gBS Schema (through the use of a normalised
schema and marker handles), are thus key to the deployment of this novel multimedia resource adaptation
framework based on Bitstream Syntax Descriptions. In an effort to exploit the benefits of both
technologies, a joint approach was attempted by defining a harmonised architecture and schema hierarchy.
The schema hierarchy is specified in Section 3.1 and the joint architecture in Section 3.2. The
BSDL is briefly explained in Section 3.3 and in more detail in [2]. The gBS Schema technology is
described in Section 3.4.

3.1. Schema hierarchy

BSDL provides a number of built-in datatypes derived from XML Schema, with specific semantics in the
context of generating an adapted bitstream. These datatypes are defined in a schema named Schema for
BSDL-1 Extensions.

On top of this, BSDL introduces a number of language constructs defining new types of constraints on
XML documents. These constructs are added to the XML Schema language by using annotation
mechanisms, and are therefore ignored by XML Schema for the validation, but carry specific semantics in
the context of description generation. These language extensions are defined in a schema named Schema for
BSDL-2 Extensions. This schema imports the Schema for BSDL-1 Extensions.

Applications may define Bitstream Syntax Schemas (BS Schemas) for multimedia coding formats. As a
BS Schema can define the bitstream syntax for specific codecs and in a level of detail suitable for the specific
adaptations, these schemas are application-dependent. It is expected, however, that schemas for common
multimedia coding formats (e.g., the various MPEG-4 Visual profiles, JPEG2000) will be defined and be
widely used. In order to use the built-in datatypes (BSDL-1) and language constructs (BSDL-2) of BSDL,
these codec-specific schemas need to import one or both of the schemas mentioned above. Note that for the
description generation, the language constructs (i.e., the Schema for BSDL-2 Extensions) are required,
whereas for bitstream generation only the datatypes (i.e., the Schema for BSDL-1 Extensions) are
needed. The gBS Schema proposed in this paper uses BSDL datatypes and therefore imports the Schema
for BSDL-1 Extensions.

A BS Description is an instantiation of a codec-specific BS Schema, whereas a gBS Description is an
instantiation of the gBS Schema.

The different inclusion mechanisms between the schemas explained above are illustrated in Fig. 2.

3.2. Adaptation architecture

Fig. 3 depicts the architecture of one resource adaptation step. The architecture comprises the original
scalable bitstream and its BSD, one (or more) description transformations, the adapted bitstream and its
BSD and two additional processes, the description generation and bitstream generation processes. The
description may be a gBS Schema-valid gBS Description (gBSD), or a BS Schema-valid BS Description
(BSD). The output produced in one adaptation step is an adapted bitstream and possibly a transformed



G. Panis et al. | Signal Processing: Image Communication 18 (2003) 721-747 729

Schema for
BSDL-1 Extensions

Imports Imports
S
Schema for
9BS Schema Imports | BSDL-2 Extensions
+ Imports

Caodec-specific

Insta!\ce of Codec-specific
. BS Schema
\ 4
Instance of
I
1
gBS Description BS Description

Fig. 2. BSD schema hierarchy.

Scalable Description ) Bitstream Syntax

Bitstream Generation Description

.-""--- e
Description

Transformation

— Transformed
: its! rer;m itstream Syntax
eneration Description

Adapted
Bitstream

Fig. 3. Adaptation architecture.

BSD that correctly references the new bitstream. This output enables the application of multiple successive
adaptations. A walkthrough of the process is given below. Note that Fig. 3 focuses on the resource
adaptation engine, therefore other elements of the adaptation framework, like the decision making
engine and the constraints description, are not shown here.
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The BSDs or gBSDs may be generated in a proprietary way, e.g. during encoding. Alternatively, the
BSDL-defined Description Generator (BintoBSD), described in Section 3.3, may be used to parse a
bitstream described by a BS Schema and generate its description.

The bitstream and its description are subject to the adaptation. The adaptation decision engine is
assumed to determine the optimal adaptation for the media resource, given the constraints as described in
Section 2 and depicted in the high-level architecture in Fig. 1. Based on that decision, if the resource is not
pre-stored but needs to be derived by adapting an existing resource, then one (or several) description
transformation(s) is (are) selected to be applied to the input description. The result of these transformations
is a transformed description which is the basis for the generation of the adapted bitstream. The generation
of the adapted bitstream is achieved using the bitstream generation process shown in Fig. 3 and specified in
more detail later in this section. This Bitstream Generator might be a so-called BSDtoBin (processing a
BSD) or a gBSDtoBin parser (utilising a gBSD), as explained below. It should be noted that due to data
dropping, some address references (e.g. of elements after a removed data block) in the Transformed BSD
might not point to the correct sections of the Adapted Bitstream and therefore need to be adjusted. The
address correction process can either be incorporated into the Bistream Generation process or be applied
on the Transformed BSD using an XSLT (not shown in Fig. 3).

3.3. Bitstream Syntax Description Language (BSDL)

This section briefly describes how the Bitstream Syntax Description Language (BSDL), introduced
above, is built on top of XML Schema. A more detailed specification may be found in [2,14,16]. The work
presented here incorporates the harmonisation with the gBS Schema approach along with the new
developments required for the description generation.

The primary role of a schema is to validate an XML document, i.e. to check that it follows a set of
constraints on its structure and datatypes. On top of this, BSDL adds a new functionality, which is to
specify how to generate an adapted bitstream from its description and vice versa. For this, a number of
restrictions and extensions covering structural and datatype aspects of XML Schema are required. This is
done in a compatible way such that a BS Schema still conforms to XML Schema and can be used to
validate the BS Description. In the following, we name BSDtoBin Parser the generic software parsing the
BSD and generating the bitstream, and BintoBSD Parser the software performing the reverse operation.
For their operation, both parsers use the BS Schema specifying the syntax of the coding format. Note that
proprietary software may be used instead of the BintoBSD parser to generate the BSD as long as the result
conforms to the BSDL specification.

In the XML Schema terminology used below, component is the generic term for the building blocks that
comprise the abstract data model of the schema; xsd:choice, xsd:sequence, xsd:element or
xsd: complexType are examples of schema components.

For BSDtoBin, the BSDL uses a set of XML Schema components and defines built-in datatypes with
specific semantics in the context of the bitstream generation. On the other hand, some XML Schema
components should be ignored by the BSDtoBin parser because they have no meaning in the BSDL
context. This set of extensions and restrictions is referred to as BSDL-1, and the syntax of the extensions is
specified in the Schema for BSDL-1 Extensions introduced above.

The BintoBSD parser requires more advanced features on top of BSDL-1, including some new
language constructs such as variables and conditional statements. In order to remain compatible with
XML Schema, these extensions are introduced as application-specific annotations, namely by using
the xsd:appinfo schema component and adding attributes with non-schema namespaces. This set of
extensions is referred to as BSDL-2, where BSDL-1 is a subset of BSDL-2. Their syntax is specified in
the Schema for BSDL-2 Extensions introduced above. In the following, BSDL refers to both BSDL-1
and BSDL-2.
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The fundamental principle of BSDL is that the successive parameters of the bitstream are included in the
XML elements of the description. In the example shown in Document 1, a two-byte parameter with the
hexadecimal value FF91 is embedded in the description by the element (Marker )FF91<{ /Marker ). Other
parameters may be written in a decimal format, depending on their semantics and the application.
Furthermore, a type must be assigned to each element in order to specify the encoding scheme of its
content. While the function of a datatype definition in XML Schema is to constrain the value of an element
or attribute content for validation, the datatype specifies its binary encoding for BSDL. BSDL datatypes are
therefore restricted to those for which a binary representation may be defined. For example, the XML
Schema xsd:integer datatype represents the mathematical concept for an unbounded integer. No implicit
binary representation may be assigned to this type, which is therefore excluded from BSDL. On the other
hand, xsd:int is derived from xsd:integer by restricting its value space to the values that may be
represented on four bytes. BSDL includes this type and assigns a binary representation on four bytes.
According to this principle, BSDL uses a defined list of primitive XML Schema datatypes, including integer
types with a finite number of bytes (xsd:long, xsd:int, xsd:short, xsd:byte) and their unsigned
derivatives (xsd:unsignedLong, ...), floating point numbers (xsd:float and xsd:double) and binary data
(xsd:hexBinary and xsd:base64). Furthermore, BSDL introduces a new built-in datatype named
bsdl:byteRange to point to a data segment in the original resource, used when the size of the segment
would make the description too verbose. In this case, the description does not actually include the data, but
a reference locating the data in the original bitstream.

An example of a BSD and a BS Schema is given in Documents 1 and 2, respectively.

Document 1: Example of a BSD of a JPEG2000 bitstream

{7?xml version="1.0"7)
{Codestream xmlns="JP2" xmlns: jp2="JP2" xsi:schemalocation="JP2 JP2.xsd" )
{MainHeader )
{!--and soon... —--)
{/MainHeader )
{Bitstream)
{Packet )
{S0P>»
{Marker »FF91< /Marker )
{LMarker »4< /LMarker )
{Nsop »0< /Nsop)
{/s0pP>
{PacketData ) 1565 242 /PacketData )
{ /Packet )
{!--and soon... --)
{/Bitstream)
{/Codestream )

Document 2: Example of a BS Schema of a JPEG2000 bitstream

{xsd:schema targetNamespace="JP2"
xmlns:bsdl-1="urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" )
{xsd:import namespace="urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS" schemalocation="BSDL-1.
xsd"/ >
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{xsd:element name="SOP" )
{xsd:complexType )
{xsd:sequence )
{xsd:element name="Marker" type="xsd:hexBinary"/)
{xsd:element name=‘‘LMarker’’ type=‘‘xsd:unsignedShort’’/)
{xsd:element name="Nsop" type="xsd:unsignedShort"/)
{/xsd:sequence )
{/xsd:complexType )
{/xsd:element )
{xsd:element name="PacketData" type="bsdl-1:byteRange"/)
{l--and soon... --)
{/xsd:schema)

It is important to note that, while a coding format may be specified as a ““flat” structure, i.e. as a sequence
of binary symbols, these symbols may be grouped in a hierarchical manner in the description, since the
inherent tree structure of the XML document has no impact on the bitstream generation process.
Furthermore, the choice of tag names is also fully transparent. The design of a BS Schema for a given
coding format is therefore not unique and is fully application dependent. For example, Document 6 shows
the high-level structure of an MPEG-4 Visual Elementary Stream BSD, where Visual Object Planes (VOPs)
are described as a single segment of data and not further detailed, since the adaptation consists of simply
removing the B-VOPs. Another application may use finer scalability modes of MPEG-4 Visual and hence
require a finer level of details within the VOPs. Depending on the application and typically on the
scalability mode used, different levels of details may be required and thus different BS Schemas may be
designed for the same coding format.

3.4. Generic Bitstream Syntax Schema (gBS Schema)

The generic BS Schema is targeting enhanced binary resource adaptations. The gBS Schema imports
the Schema for BSDL-1 Extensions in order to use the datatypes specified in BSDL-1. The syntax
of a gBSD is generic and codec-independent, therefore enabling the processing of binary resources
without the need of codec-specific schemas. Additionally, the gBS Schema provides the following
functionality:

® Semantically meaningful marking of described syntactical elements through the use of a “marker”
handle.

® Description of a bitstream in a hierarchical fashion that allows grouping of bitstream elements for
efficient, hierarchical adaptations.

® Flexible addressing scheme to support various application requirements and random accessing of the
bitstream.

The gBSD approach is based on the same general concept as BSDL. However, the unique functionality
that the gBS Schema provides, facilitates complex adaptations. Specifically, the “marking” of elements and
the hierarchical structure of the description, can greatly simplify sophisticated bitstream manipulations
(e.g., remove an SNR layer from a JPEG2000 bitstream when the progression order is resolution) and
semantic-related adaptations (e.g., remove violent scenes from a video sequence). Furthermore, the
gBSDtoBin process does not require an application or codec-specific schema, since all the necessary
information to regenerate the bitstream is included in the gBSD and the semantics of the gBS Schema
elements. This is particularly desired when the adaptation takes place on remote, constraint devices, since it
saves bandwidth space and computational resources.
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3.4.1. gBS Schema

The gBS Schema is fully specified in the MPEG-21 DIA standard [16]. We restrict ourselves here to
introduce the most important elements of the gBS Schema approach. Examples of gBSDs illustrating the
concepts described in the following are given in Section 4.

The gBS Schema defines three types of elements:

® Header: Contains information about the classification scheme used and sets default values required for
resolving the address references in the gBSD. Specifically, the header defines the alias and URI of the
classification scheme where the element names used in the gBSD are specified. These names are codec-
specific names of the elements represented in the gBSD, thus enabling codec aware adaptation engines to
navigate and use the gBSD. For interoperability and extensibility purposes, these names can be stored in
a classification scheme which is identified in the Header by its URI. Additionally, the Header defines the
default values used for addressing (the URI of the bitstream location, addressing mode (absolute,
consecutive, offset), units used (bit or byte)). Only the root and the gBSDUnit may contain a Header.
The values of the parameters defined in the Header apply to all descendants of the element that contains
the Header. These parameters may be overridden by another Header further down in the description tree
or addressing attributes in individual gBSDUnits or Parameters.

® ¢BSDUnit: Represents a section of the bitstream. The size of a gBSDUnit is not limited, so it could be
used to represent a single bitstream syntactical element, a group of elements, or a block of data. As
the gBSDUnit does not provide the actual value of the element it represents, just its location in the
bitstream, it should not be used to represent elements the values of which might need to be modified
during adaptation. A gBSDUnit may include one Header and zero or more Parameters and gBSDUnits.
A gBSDUnit includes a start and length attribute to point to the section of the bitstream it describes. In
addition, the optional addressing attributes open the possibility to override inherited addressing
attributes. If these attributes are instantiated, they apply to the gBSDUnit and are inherited to its
descendants but not its siblings.

® Parameter: Describes a syntactical element of the bitstream. The Parameter can be used to describe
elements of the bitstream the values of which might need to be changed when adapting the bitstream
(cf. Section 4.1.2). Unlike the gBSDUnit, the Parameter provides the actual value and datatype of the
bitstream element, therefore enabling the alteration of the numerical values of bitstream elements in
addition to removal. The datatype is necessary for the bitstream generation process (gBSDtoBin) to
correctly encode the syntactical element in the bitstream. The Parameter also includes optional
addressing attributes, similarly to the gBSDUnit, to allow overriding the inherited values.

A schema has been created to provide a library of basic datatypes for the value of the Parameter. This
library includes some of the XML Schema built-in datatypes and others encountered often in existing
multimedia coding formats. The library can be easily extended to include new datatypes.

The gBSDUnits and Parameters may carry a ‘“‘marker” attribute. This attribute marks sections of
the bitstream, therefore providing a handle which could link an external description of possible
adaptations, using MPEG-7 and MPEG-21 description tools, to the specific bitstream elements that need to
be either removed or modified to achieve the corresponding adaptation. The semantic intelligence lies in
the MPEG-7 and MPEG-21 metadata as well as their linkage to the marker. The marker value and the
resource adaptation engine are therefore semantically agnostic. This handle can be extremely useful in the
case of complicated adaptations (e.g., select a specific region in an image) or semantic-related adaptations
(e.g., remove violent scenes from a video, when it will be watched by children). The adaptation engine can
then easily apply semantic adaptations that would otherwise require extensive knowledge about the
resource’s coding format and semantic analysis of the resource.

The gBS Schema provides a flexible addressing scheme which allows specifying and overriding the
bitstream location, the addressing unit, and addressing mode. The location of the bitstream is expressed in
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the form of a URI, the unit can be either bit or byte and the addressing mode can be absolute, offset, or
consecutive. Absolute addressing mode means that the element in the gBSD carries a start attribute which
gives the absolute position of the element relative to the beginning of the bitstream. Offset is similar to
absolute; however, the start attribute gives the position relative to the position of the parent element in
the gBSD. Consecutive means that the position of the element is the next bit or byte after the end of the
previous element in the gBSD tree. If the element is the first child, then the previous element is the parent
element.

3.4.2. Adaptation process using the gBSD
The architecture shown in Fig. 3 is used to generate a gBSD, adapt it, and then regenerate the adapted
bitstream. The process is explained step-by-step in the sequel.

3.4.2.1. gBSD generation. The gBSD may be generated in any proprietary way. Due to the hierarchical
structure of the description and the marking of gBSDUnits and Parameters for various adaptations, the
production of a gBSD is application-specific. Some anticipated methods for gBSD production include the
generation of a gBSD during media encoding by an enhanced encoder and the generation by a codec-
specific bitstream parser. The gBSD may also be generated using the BintoBSD parser (cf. Section 3.3),
which supports the Schema for BSDL-2 extensions. In the latter approach, a generic bitstream processor
(BintoBSD) parses the bitstream using a bitstream-specific schema and an optional formatting XSLT style
sheet to generate the gBSD. The XSLT style sheet which is used to transform the BSD generated by
the BintoBSD parser into a valid gBSD, is a possible way of giving the gBSD the format that is suitable for
the specific adaptations. The XSLT can specify the hierarchical structure and the level of detail of the gBSD
and add the marker handles to description elements that could be removed or modified during the
adaptation process. This generation method was used to validate and evaluate the gBS Schema approach as
described in Section 4.

3.4.2.2. gBSD transformation. An XSLT style sheet may be used to transform the gBSD. The style sheet
corresponds to the adaptation option selected by the adaptation decision engine and is input to the gBS
Schema-based resource adaptation engine possibly along with input parameters to the XSLT. The changes
performed on the description reflect the alterations needed to adapt the bitstream. Some of the most
common changes include the removal of syntactical elements (Parameters) or portions of the bitstream
(gBSDUnits) and the replacement of the values of bitstream syntactical elements (Parameters). Any other
more complicated bitstream operations (e.g. data rearrangement) that can be achieved by transforming the
gBSD are also possible.

3.4.2.3. Bitstream generation using gBSD. The gBSDtoBin processor hierarchically parses a gBSD and
constructs the corresponding bitstream. The gBSDtoBin uses the addressing information in the description
to retrieve the bitstream portions represented by gBSDUnits and it uses the value and datatype of the
Parameters to correctly encode these syntactical elements into the bitstream. The gBSDtoBin processor is
also responsible to update the addressing attributes that become incorrect after the removal of bitstream
elements.

3.4.2.4. Multi-step adaptation. There are cases when a bitstream has to be adapted several times. For
example, a JPEG2000 image might need to have its spatial resolution reduced to allow rendering on a PDA
screen but it might additionally have to be scaled down in SNR quality to avoid overloading the slow
wireless GPRS connection. If the adaptations are to be performed on the same device, e.g. the server, then
all adaptations may be applied to the description before it is input to the gBSDtoBin to generate the final
adapted bitstream. However, when the adaptations do not take place on the same device, then the bitstream
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needs to be generated every time it is transferred from one device to the other, along with its description. It
is then required that the description correctly describes the bitstream it references. Therefore, some
addressing references in the gBSD might need to be updated during the gBSDtoBin process. A description
“correctly describes” a certain bitstream when the gBSDUnits and Parameters of the description refer to
actual parts of the bitstream and the addressing (start and length) attributes of the elements point to the
correct parts of the bitstream. There is, however, no check on whether the actual values of the syntactical
elements in the bitstream are correct with respect to the coding format.

4. Applications of BSDL/gBS Schema: adaptation of JPEG2000 images and MPEG-4 visual elementary
streams

Images and videos represent two of the most commonly used multimedia types. JPEG2000 [9] and
MPEG-4 Visual [8] are well-known standardised coding formats. Both formats offer various types of
scalability and therefore provide suitable test cases for the application of the BSDL/gBS Schema adaptation
method. Additionally, an application of BSDL to the MPEG-4 Visual Texture Coding, which also provides
scalable features, can be found in [17].

4.1. JPEG2000 images

JPEG2000 [9] is an inherently scalable image coding format. Each JPEG2000 image may be encoded
with several types of scalability, including SNR, resolution and colour component. The colour component
scalability means that, depending on the colour space, the image may be stripped of one or even all
colour components. In order to scale down a JPEG2000 image using any of the three types of scalability,
certain packets of the image bitstream need to be removed and some of the header markers need to be
modified. The complete adaptation process for a JPEG2000-encoded bitstream named ‘city.jp2” is
described here, first using a BSDL-based approach and then using the gBS Schema method. The bitstream
“city.jp2” is an image taken from the MPEG-7 test content set and encoded using a JPEG2000 [9]
conformant encoder.

4.1.1. BSDL-based adaptation method

The application of BSDL to a JPEG2000 image is briefly explained here, a more extensive description
may be found in [1]. Document 3 shows a fragment of the BSD “‘city.xml” obtained by running the
BintoBSD parser on the “city.jp2” bitstream.

Document 3: Fragment of the “city.xml” BSD

{7xml version="1.0"7)

{Codestream xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="JP2" xsi:schemalocation="JP2 JP2.xsd" )
{MainHeader )

{s0C
{Marker ) FFAF { /Marker )
{/s0Cc)
(SIZ>
{Marker )FF51{ /Marker )
{LMarker »47{ /Lmarker )
{(Rsiz»0{/Rsiz)
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{(Xsiz »768{/Xsiz)
{Ysiz »512{/Y¥siz)
{!--and soon --)
{Csiz)»3{/Csiz)
{!--and soon--)

{/S1Z)

{ otherSegmentMarkers )
{!--and so on --)
<QCDh)

{Marker »FF5C{ /Marker )
{LMarker »35( /LMarker )
{MarkerData )69 33 /MarkerData)

{/QCDb)
{!--and so on --)
{/otherSegmentMarkers )
{ /MainHeader )
(Tile)
{!'--and soon--)
{Bitstream)
{Packet )
(S0P>
{Marker »FF91{ /Marker )
{LMarker »4{ /Lmarker )
{Nsop »0</Nsop)
{/s0pP)
{PacketData ) 1565 435 /PacketData )
{ /Packet )
{!--and soon --)
{/Bitstream)
{/Tile)
(EOC)
{Marker »FFD9< /Marker )
{/EOC)
{/Codestreamn )

In short, a JPEG2000 bitstream consists of a main header, itself made of several “marker segments”,
followed by one or several “‘tile(s)” containing the payload, i.e. the packets of actual image data resulting
from the encoding method. The marker segments give a number of parameters about the image and about
the compression method, such as its dimension or the wavelet transformation used. In the JPEG2000
specification, they are referred to as mnemonics such as SIZ for the parameters relating to the image size. In
the BSD, the XML elements describing the marker segments or their parameters are named after these
mnemonics.

Note that for explanation purposes, all the parameters of the SIZ marker segment have been detailed by
the BintoBSD parser (but not all are shown in Document 3), notably the Csiz parameter indicating the
number of colour components that will be used by the adaptation process. On the other hand, the QCD
marker segment has been left as a ““black box” indicating a data segment of 33 bytes with no further details
on the included parameters. This example shows that, depending on the application, it is possible to detail
some parts of the bitstream and leave some other parts non-detailed.
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For simplicity, three different XSLT style sheets have been written for adaptation, corresponding to the
three scalability modes used in this application. Document 4 shows the style sheet modifying the SNR
quality of the image. The number of data packets is a function of the number of colour components and of
decomposition levels, which are indicated by the relevant parameters in the BSD and the number of output
layers, which is given as an input parameter to the style sheet. The transformation thus consists of
modifying the value of the latter parameter in the BSD and removing the relevant number of packets. An
adapted bitstream is then re-generated from the transformed BSD by applying the BSDtoBin parser.

Document 4: XSLT style sheet modifying the number of SNR quality layers of a JPEG2000 bitstream

{7xml version="1.0"7)
{xsl:stylesheet xmlns:j="JP2" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0")
{xsl:output method="xml" indent="yes"/)
{!-- Parameter: output number of quality layers, default value=1--)
{xsl:param name="nLayersOut" ) 1{/xsl:param)
{!-- Calculate number of output packets --)
{xsl:variable name="nResOut" )

{xsl:value-of select="//j:COD/j:SPcod/j:nDecompLevels"/)
{/xsl:variable)
{xsl:variable name="nCompOut" )

{xsl:value-of select="//j:SIZ/j:Csiz"/)
{/xsl:variable)
{xsl:variable name="nS0PQOut" )

{xsl:value-of select= "($nResOut + 1) * $nlayersOut * $nCompOut"/)
{/xsl:variable)
{xsl:template name="tplAl1l" match="@% |node()" )

{xsl:copy)

{xsl:apply-templates select="@%|node()"/)

{/xsl:copy)
{/xsl:template )
{xsl:template match="j:numLayers" )

{!'-- Set numLayers value to nLayersOut --)

{xsl:copy)
{xsl:value-of select="$nLayersQOut"/)

{/xsl:copy)
{/xsl:template )
{xsl:template match="j:Bitstream" )
{xsl:copy)
{!-- do not copy packets with position greater than nSOPOut --)
{xsl:apply-templates select="j:Packet [position() <= $nSOPOut]"/)
{/xsl:copy)
{/xsl:template)
{/xsl:stylesheet )

4.1.2. gBS Schema-based adaptation method
The same JPEG2000 bitstream ““city.jp2”’ was parsed using BintoBSD and an XSLT style sheet was
applied to produce the corresponding gBSD. The style sheet is used to specify the desired level of detail,
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hierarchy, and also to mark Parameters and gBSDunits in order to facilitate the adaptation process.
A fragment of the gBSD “city.xml” is shown in Document 5.

Document 5: Fragment of the “‘city.xml” gBSD

{?xml version="1.0" encoding="UTF-8"7)

{dia:DIA xmlns="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS"
xmlns:dt="urn:mpeg:mpeg21:2003:01-DIA-BasicDatatypes-NS"
xmlns:gbsd="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS"
xmlns:dia="urn:mpeg:mpeg21:2003:01-DIA-NS"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS gBSSchema.xsd urn:mpeg:mpeg21:

2003:01-DIA-BasicDatatypes-NS BasicTypes.xsd" )
{dia:Description xsi:type="gBSDType" >

{Header )

{ClassificationAlias alias="J2K" href="urn: jpeg: jpeg2000:cs:syntacticalLabels"/)
{DefaultValues unit="byte" addressMode="Absolute" globalAddress="Content/city.
jp2"/)

{/Header )

{gBSDUnit syntacticallLabel=":J2K:MainHeader" start="0" length="135")
{gBSDUnit syntacticallabel=":J2K:S0C" start="0" length="2"/)
{gBSDUnit syntacticalLabel=":J2K:SIZ" start="2" length="49")

{Header )
{DefaultValues addressMode="Consecutive"/)
{ /Header )
{Parameter name=":J2K:Marker" length="2")
{Value xsi:type="xsd:hexBinary" )FF51(/Value)
{ /Parameter )
{Parameter name=":J2K:Lsiz" length="2")
{Value xsi:type="xsd:unsignedShort" »47{/Value)
{ /Parameter )
{Parameter name=":J2K:Rsiz" length="2">
{Value xsi:type="xsd:unsignedShort" )0</Value)
{ /Parameter )
(Parameter name=":J2K:Xsiz" length="4" marker="R")
{Value xsi:type="xsd:unsignedInt" )768</Value)
{ /Parameter )
(Parameter name=":J2K:Ysiz" length="4" marker="R")
{Value xsi:type="xsd:unsignedInt" »512(/Value)
{ /Parameter )
{!-- ... and so on (other parameters) ...... -=>
{ gBSDUnit syntacticallabel=":J2K:Comp_siz" length="3" marker="C0"/)
{gBSDUnit syntacticallabel=":J2K:Comp siz" length="3" marker="C1"/)
{gBSDUnit syntacticallabel=":J2K:Comp_siz" length="3" marker="C2"/)
{l-- ... andsoon ...... -=>
{ /gBSDUnit >
{!-- ... andsoon ...... -=>



G. Panis et al. | Signal Processing: Image Communication 18 (2003) 721-747 739

{gBSDUnit syntacticallabel=":J2K:COM" start="102" length="33"/)
{/gBSDUnit )
{(!-- ... andsoon ...... -->
{/dia:Description)
{/dia:DIA)

This description demonstrates most of the gBS Schema features. The Header, child of the gBSDType
Description element, defines the classification alias and its URI as well as the default addressing values
which include the location of the bitstream, the mode and unit used for addressing. Subsequently, the
hierarchical description of the bitstream syntax follows.

Parameters represent syntactical elements of the bitstream, the values of which might be changed during
certain adaptations. Therefore, the numerical value and datatype of these elements are provided through
the Value element and the xsi:type attribute. For example, the Parameters with names Xsiz and Ysiz
represent the corresponding bitstream elements which specify the spatial resolution of the image. These
Parameters need to be adjusted accordingly when the bitstream is scaled down to a lower resolution.

gBSDUnits are used to represent segments of data in the bitstream, as is exemplified by the gBSDUnits
with syntacticalLabel J2K:Comp_siz. gBSDUnits are also used to group other gBSDUnits and Parameters,
as in the case of the J2K:MainHeader unit.

Note that the gBSDUnit with syntacticalLabel J2K:SIZ has a Header child element that defines a
different addressMode attribute. This attribute overrides the addressMode attribute inherited by the
gBSDUnit from its ancestors, i.e. the root element. Therefore, the addressMode for all descendants of the
J2K:SIZ gBSDUnit is Consecutive.

The names of syntactical elements are also provided (syntacticalLabel in gBSDUnit, name in Parameter).
Both of these attributes are optional. The gBSD creator may choose to include them so that the description
can be used by adaptation engines that are aware of the encoding format and can adapt the bitstream by
using the gBSD as a reference index in order to locate the syntactical elements in the bitstream. These
names can be listed in a Classification Scheme, specified in the Header in terms of its URI and the alias used
in the gBSD.

Lastly, note that the last three gBSDUnits include a “‘marker” attribute. The value of the attribute itself
is not significant. What is important is the handle that the marker provides to bitstream segments. This
handle can provide a link between a description of adaptation options (not given here, typically used by an
adaptation decision engine) and the gBSD transformation process. In the example shown, each of the
marked gBSDUnits is related to a colour component. Since in this specific image the colour space is YUV,
CO represents luminance, and C1 and C2 represent chrominance. The value of the marker is matched to an
adaptation option listed in the metadata describing the content. The marker is also used by the XSLT style
sheet to easily identify the elements that need to be changed for a specific adaptation. By marking a
description in such a way, possibly offline on a powerful server, the complexity of the adaptation itself may
be significantly reduced, which is desirable when the adaptation is expected to take place on a device with
limited resources (e.g. network node).

The gBSD was transformed using two XSLT style sheets. The first one removed two of the five quality
layers. The second style sheet reduced the spatial resolution from 768 x 512 to 192 x 128 pixels. The
resulting description ““city_adapt.xml” includes the adjusted values for the Parameters and only the
gBSDUnits that are needed to produce the adapted version of the image with three quality layers and a
resolution of 192 x 128 pixels.

The adapted image “‘city_adapt.jp2” was reproduced from the “‘city_adapt.xml” description and the
original image “‘city.jp2” using the gBSDtoBin process.

The “city_adapt.xml” description was transformed once again using an XSLT style sheet that removes
the chrominance to yield a greyscale version of the image. The resulting description “‘city_adapt2.xml”” and
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Fig. 4. (a) city.jp2: original image; (b) city_adapt.jp2: SNR, Resolution reduced; (c) city_adapt2 (greyscale): SNR, Resolution reduced,
colour components removed.

the “city_adapt.jp2” bitstream were then parsed by gBSDtoBin to produce the final image
“city_adapt2.jp2”” which is a greyscale image with three quality layers and a resolution of 192 x 128 pixels.

The three images (city.jp2, city_adapt.jp2, city_adapt2.jp2) are shown in Fig. 4. Images (a) and (b) are in
colour, whereas (c) is greyscale.

4.2. MPEG-4 Visual Elementary Streams

MPEG-4 video coding is based on the well-known motion-compensated hybrid DCT coding scheme.
Therefore, I-, P- and B-frames are subject to adaptations required, e.g., for temporal scalability. Every
MPEG-4 Visual Elementary Stream (MPEG-4 Visual ES) comprises several Video Object Planes (VOPs)
classified as different types such as I-, P- and B-VOPs, among others. Each ES is headed by some
configuration or header information depending on the ES entry point [8]. The complete hierarchy of an
MPEG-4 Visual ES is illustrated in detail in [18]. A famous movie trailer, “Star Wars Episode II-Attack of
the Clones”, was selected to demonstrate the BSDL and gBS Schema approaches.

4.2.1. BSDL-based adaptation method

Document 6 shows a fragment of the BSD obtained after applying the BintoBSD parser to an MPEG-4
Visual stream, Advanced Simple Profile. Note that we detail the minimum of information required by
the adaptation, namely the parameter vop_coding_type indicating the VOP type (0, 1 and 2 for I-, P- and
B-VOPs, respectively).

Document 6: Fragment of an MPEG-4 Visual ES BSD

{7xml version="1.0"7)
{Bitstream xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns="MPEG4"
xmlns :mp4="MPEG4" xsi:schemalocation="MPEG4 MPEG4.xsd" xml:base="Content/starwars.
Cmp" >
Vo)
{video_object_start_code »00000101( /video_object_start_code )
{/Vo)
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<voL>
{video_object_layer_start_code »00000120¢ /video_object_layer_start_code)
{VOL_data )8 18</V0OL_data)

{/VOL)

(VOPS
{ vop_start_code » 000001B6 { /vop_start_code )
{vop_coding type »0{/vop_coding type )
{Stuffing)16</Stuffing)
{Payload )31 2872 /Payload )

{/VOP)

(VOP)
{vop_start_code »000001B6< /vop_start_code )
{vop-coding type »1{/vop_coding type )
{Stuffing 17 {/Stuffing)
{Payload »2908 59¢ /Payload )

{/VOP)

(VOPS
{ vop_start_code » 000001B6 { /vop_start_code )
{vop-coding_type »2{/vop_coding type )
{Stuffing )16 {/Stuffing)
{Payload »2972 12{ /Payload)

{/VOP)

{!--and soon --)

{/Bitstream)

The BSD is then transformed by means of the style sheet shown in Document 7. Note that the
transformation is very simple, since it only consists of removing the B-VOPs. The adapted bitstream is then
re-generated by the BSDtoBin parser.

Document 7 XSLT style sheet for removing B-VOPs

{7xml version="1.0"7)
{xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:mp4="MPEG4"
version="1.0")
{xsl:output method="xml" indent="yes"/)
{'-- Match all: default template --)
{xsl:template name="tplAl1l" match="@% |node()" )
{xsl:copy ) {(xsl:apply-templates select="@% |node()"/) {/xsl:copy)
{/xsl:template )
{!--Match B_.VOP - Overrides tplAll --)
{xsl:template name="tplB_VOP" match="mp4:VOP [mp4:vop_coding type=2]"/)
{/xsl:stylesheet )

4.2.2. gBS Schema-based adaptation method

First, the generic bitstream processor (BintoBSD) is used to generate an intermediate XML
representation of the bitstream, a BSD. Second, an XSLT transformation produces a gBSD which is
depicted in Document 8. The additional XSLT style sheet adds syntactical labels and the hierarchical
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structure, including a “marker” handle designating violent scenes. A description of the syntactical gBS
Schema elements can be found in Section 3.4.1.

Document 8: Fragment of an MPEG-4 Visual ES gBSD

{?xml version="1.0" encoding="UTF-8"7)

{dia:DIA xmlns="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS"
xmlns:dia="urn:mpeg:mpeg21:2003:01-DIA-NS"
xmlns:gbsd="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS gBSSchema.xsd" )
{dia:Description xsi:type="gBSDType" )

(Header )
{ClassificationAlias alias="MV4" href="urn:mpeg:mpegé:video:cs:
syntacticallabels"/)
{DefaultValues addressUnit="byte" addressMode="Absolute" globalAddressInfo=
"Content/starwars.cmp"/)
{ /Header )
{gBSDUnit syntacticalLabel=":MV4:V0" start="0" length="4"/)
{gBSDUnit syntacticalLabel=":MV4:VOL" start="4" length="22"/)
{gBSDUnit start="26" length="99983" marker="violent-5")
{gBSDUnit syntacticalLabel=":MV4:I_VOP" start="26" length="2877"/)
{gBSDUnit syntacticallLabel=":MV4:P_VOP" start="2903" length="64"/)
{gBSDUnit syntacticallLabel=":MV4:B_VOP" start="2967" length="17"/)
{gBSDUnit syntacticalLabel=":MV4:B_VOP" start="2984" length="16"/)

{l--...andsoon ... --)
{gBSDUnit syntacticallabel=":MV4:P_VOP" start="98296" length="1713"/)
{/gBSDUnit )

{ gBSDUnit start="100009" length="68022" marker="violent-5")
{gBSDUnit syntacticalLabel=":MV4:I_VOP" start="100009" length="1825"/)
{gBSDUnit syntacticalLabel=":MV4:P_VOP" start="101834" length="1780"/)

{l--...andsoon ... - -
{gBSDUnit syntacticallabel=":MV4:I_VOP" start="166802" length="1229"/>
{/gBSDUnit )
{(!--...andsoon ... --)
{/dia:Description)
{/dia:DIA)

A so-called codec-aware adaptation engine that has knowledge about the classification scheme (CS) used
to name the syntacticalLabels in the gBSD (in this case an MPEG-4 Visual Elementary Stream CS,
specifying MPEG-4 Visual Elementary Stream element names, e.g. .VOP, P_.VOP and B_VOP) carries out
the first adaptation. Assuming that the end user’s terminal does not have the capability for decoding
B-VOPs, the corresponding gBSDUnits are removed during this adaptation step. The second constraint
retrieved from the end user in this example comprises information about user characteristics such as age of
the beholder. Due to that fact, the adaptation decision engine decides to remove all gBSDUnits marked as
“violent”. An appropriate XSLT style sheet performs each transformation followed by a bitstream
generation process which generates an adapted version of the bitstream after each description
transformation. Each transformation must ensure to provide a correct bitstream description and
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corresponding bitstream for the subsequent adaptation step. This might include additional (XSLT)
transformations of the bitstream description after generation of the adapted bitstream—mostly some
necessary adjustments of the address information. Specifically the start and length attributes of parents or
elements after a removed segment, might need to be updated.

Document 9 exemplifies an XSLT style sheet for the first adaptation step. It comprises two XSLT
templates where the first is the default template which copies nodes from the source tree to the result tree
without changes. The second template removes all gBSDUnits with syntactical label “:MV4:B_VOP”.
Therefore, the template body is empty and nothing is copied from the source tree to the result tree.

Document 9: XSLT style sheet for removing B-VOPs only

{?7xml version="1.0" encoding="UTF-8"7)
{xsl:stylesheet version="1.0"
xmlns:gbsd="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS"
xmlns :mpeg7="urn:mpeg:mpeg7 :schema:2001"
xmlns:xsl="http://wuw.w3.0rg/1999/XSL/Transform" )
{xsl:output method="xml" indent="yes"/)
{!--Match all: default template --)
{xsl:template name="tplA11" match="@% |node()" )
{xsl:copy)
{xsl:apply-templates select="@%*|node()"/)
{/xsl:copy)
{/xsl:template )
{!-- Match gBSDUnit - Overrides tplAll --)
{xsl:template name="tplB_VOP" match="gbsd:gBSDUnit [@syntacticallLabel=>:MV4:B_VOP’]" >
{!'-- Do nothing --)
{/xsl:template)
{/xsl:stylesheet )

In practice, however, XSLT style sheets become more complicated if modifying or removing is carried
out in combination with address information adjustments. A fragment of the transformed gBSD is
illustrated in Document 10 which is the result of applying the XSLT style sheet from Document 9 on the
gBSD from Document 8. Removed gBSDUnits have been replaced with corresponding remarks.

Document 10: Fragment of a transformed MPEG-4 Visual ES gBSD

{?xml version="1.0" encoding="UTF-8"7)

{dia:DIA xmlns="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS"
xmlns:dia="urn:mpeg:mpeg21:2003:01-DIA-NS"
xmlns:gbsd="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS gBSSchema.xsd" )

{dia:Description xsi:type="gBSDType" )
{Header )
{ClassificationAlias alias="MV4"
href="urn:mpeg:mpegé:video:cs:syntacticalLabels"/)
{DefaultValues addressUnit="byte" addressMode="Absolute"
globalAddressInfo="Content/starwars.cmp"/)
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{ /Header )
{gBSDUnit syntacticallLabel=":MV4:V0" start="0" length="4"/)
{gBSDUnit syntacticalLabel=":MV4:VOL" start="4" length="22"/)
{gBSDUnit start="26" length="99983" marker="violent-5")
{gBSDUnit syntacticallabel=":MV4:I_VOP" start="26" length="2877"/)
{gBSDUnit syntacticallLabel=":MV4:P_VOP" start="2903" length="64"/)
{1-- :MV4:B_VOP removed - -)
{1-- :MV4:B_VOP removed - -)
{l--...andsoon ... --)
{gBSDUnit syntacticalLabel=":MV4:P_VOP" start="98296" length="1713"/)
{/gBSDUnit )
{ gBSDUnit start="100009" length="68022" marker="violent-5")
{gBSDUnit syntacticallLabel=":MV4:I_VOP" start="100009" length="1825"/)
{gBSDUnit syntacticalLabel=":MV4:P_VOP" start="101834" length="1780"/)

{!--...andsoon ... --)
{gBSDUnit syntacticallabel=":MV4:I_VOP" start="166802" length="1229"/>
{/gBSDUnit )
{l--...andsoon ... --)
{/dia:Description)
{/dia:DIA)

4.3. Performance measurement

The performance of the BSDL/gBS Schema approach for multimedia resource adaptation was measured
for the adaptation sequences described above. The performance was measured with respect to the
description size (relative to the resource size) and the processing time for the adaptation of the resource.

4.3.1. Description size

Table 1 summarises the file sizes required for the bitstream descriptions (XML as well as binarised) that
were used in the experiments. Table 2 shows the same data after one adaptation step. The data for the XML
bitstream descriptions were compressed using the MPEG-7 BiM (Binary Model) codec, with the new string
compression functionality ZLib turned on. This functionality is expected to be included in version 2 of MPEG-
7 Part 1: Systems [10]. The BSDs could not be compressed with the current implementation of MPEG-7 BiM*,
It is expected that newer versions of the encoder (starting from version 2) could successfully compress BSDs.

The difference in the XML/Bitstream ratio between the MPEG-4 and JPEG2000 examples is due to the
difference in the level of description detail of the two cases. For the adaptation of the MPEG-4 sequence,
individual syntactical elements are not modified and therefore not detailed in the descriptions. In the case of
JPEG2000 images, however, several elements need to be modified for each type of adaptation and are
therefore represented in the descriptions in detail. Note that the size of the description, relative to the
resource, is significantly reduced through binarisation.

4.3.2. Processing time
Table 3 shows the processing time (in seconds) measured for each step of one adaptation process. These
steps are: BintoBSD (generate BSD from bitstream), BSDtogBSD (XSLT applied to BSD to transform it to

“In version 1 of the BiM specification, some XML Schema constructs not used in MPEG-7 are not supported. Accordingly the
reference software implementation of BiM does not compress these constructs. It is expected that in version 2 which is currently being
standardised, all XML schema constructs will be supported.
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Table 1
File sizes of original BSDs and gBSDs for “‘starwars” and “city” streams
Filename/method Bitstream size (bytes) XML descr. size (bytes) BiM size (bytes) XML /bitstream BiM/bitstream
Starwars
BSD 2,515,959 283,032 — 11.25% —
¢BSD 2,515,959 133,968 12,076 5.32% 0.48%
City
BSD 240,369 18,088 — 7.53% —
¢BSD 240,369 39,113 3,725 16.27% 1.55%
Table 2
File sizes of adapted BSDs and gBSDs for “‘starwars’ and “city” streams
Filename/ Adapted bitstream Adapted XML BiM size (bytes) XML/ BiM/bitstream
method size (bytes) description (bytes) bitstream
Starwars
BSD 1,127,426 94,660 — 8.40% —
¢BSD 1,127,426 44,487 3966 3.95% 0.35%
City
BSD 151,808 12,917 — 8.51% —
¢BSD 151,808 26,026 2536 17.14% 1.67%
Table 3

Processing times for each step of the adaptation process

Processing step Proc. time (s)

Starwars City
BintoBSD 5.0 1.6
BSDtogBSD 49 22
BintogBSD 9.9 3.8
XSLT (BSD) 1.8 1.3
XSLT (gBSD) 1.7 1.6
BSDtoBin 3.6 1.3
gBSDtoBin 6.4 1.4

gBSD), BintogBSD (the aggregated time of the previous two processes), XSLT (application of
transformation style sheet to BSD and gBSD), BSDtoBin (parsing of BSD to generate the bitstream)
and gBSDtoBin (parsing of gBSD to generate the bitstream). The machine used for this experiment had the
following hardware characteristics: Pentium 4, 2 GHz, 512 KB cache, 1 GByte RDRAM.

The description generation is the most time and resource consuming process. This process, however, is
expected to take place on the resource provider’s side (most probably on a server) where computing
resources will be amply available. In the case of gBSD, in particular, it is anticipated that if the description
is properly prepared using the ““‘marker’ handle, it can make complex adaptations possible even on low-end
devices.

The BSD/gBSD transformation and bitstream generation times vary depending on the length and level of
detail in the description. It can be seen that the process for the JPEG2000 image is long relative to the
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process for the MPEG-4 sequence, considering that the MPEG-4 bitstream is significantly larger. The
reason is the presence of several fine grained syntactical elements in the JPEG2000 bitstream, the values
of which are modified during the adaptation and need to be individually encoded into the bitstream (instead
of just being copied from the original bitstream).

5. Conclusions

Resource adaptation plays an increasingly important role in the delivery of resources that meet the
customer’s preferences and constraints. XML technologies provide the tools that facilitate the adaptation
of Web content and they are being widely adopted by the multimedia metadata community. In this paper,
we presented a concept that uses XML technologies for generic, resource and coding format independent
adaptation of multimedia binary resources. The concept is based on the creation of an XML description of
the bitstream syntax. This description may be transformed and then be used to generate the adapted version
of the bitstream. Two complementary technologies that are based on this concept were described. These
technologies can be used independently or complementarily. The flexibility of BSDL allows to
automatically produce BSDs from bitstreams in a generic way. On constrained devices, the gBS Schema
approach allows efficient implementations of description transformations and adapted bitstream
generations. The combined approach described in this paper provides an elegant, flexible and practical
solution for adapting multimedia resources.
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